منابع مشابه
Topological degeneracy and vortex manipulation in Kitaev's honeycomb model.
The classification of loop symmetries in Kitaev's honeycomb lattice model provides a natural framework to study the Abelian topological degeneracy. We derive a perturbative low-energy effective Hamiltonian that is valid to all orders of the expansion and for all possible toroidal configurations. Using this form we demonstrate at what order the system's topological degeneracy is lifted by finite...
متن کاملModelling vortex-vortex and vortex-boundary interaction
The motion of two-dimensional inviscid, incompressible fluid with regions of constant vorticity is studied for three classes of geophysically motivated problem. First, equilibria consisting of point vortices located near a vorticity interface generated by a shear flow are found analytically in the linear (small-amplitude) limit and then numerically for the fully nonlinear problem. The equilibri...
متن کاملManipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry
Magnetic nanostructures in the form of a sandwich consisting of two permalloy (Py) disks with diameters of 600 and 200 nm separated by a nonmagnetic interlayer are studied. Magnetization reversal of the disk-on-disk nanostructures depends on the distance between centers of the small and big disks and on orientation of an external magnetic field applied during measurements. It is found that mani...
متن کاملRapid generation and manipulation of microfluidic vortex flows induced by AC electrokinetics with optical illumination.
We demonstrate a rapid generation of twin opposing microvortices (TOMVs) induced by non-uniform alternating current (AC) electric fields together with a laser beam on a patterned pair of indium tin oxide (ITO) electrodes. A fast and strong jet flow region between twin microvortices is also generated. Its pattern and direction, such as whether it is symmetric or asymmetric, are controlled mainly...
متن کاملExploring vortex enhancement and manipulation mechanisms in jellyfish that contributes to energetically efficient propulsion
The ability of animals to propel themselves efficiently through a fluid medium is ecologically advantageous. Flexible components that influence vortex interactions are widespread among animal propulsors. However the mechanisms by which vortices are enhanced and appropriately positioned for thrust generation are still poorly understood. Here, we describe how kinematic propulsor movements of a je...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Photonics
سال: 2013
ISSN: 1749-4885,1749-4893
DOI: 10.1038/nphoton.2013.300